

SOUTH AFRICAN SUGARCANE RESEARCH INSTITUTE¹ Private Bag X02, Mount Edgecombe 4300

UNIVERSITY OF KWAZULU-NATAL²

TRAIT PARAMETER ESTIMATION AND IDEOTYPING WITH CANEGRO

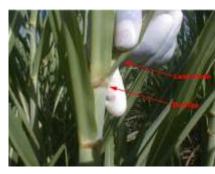
HOFFMAN N^{1,2}, SINGELS A^{1,2}, PATTON A¹, JONES MR¹ AND RAMBURAN S¹

OBJECTIVES

Overall goal: evaluate the suitability of the Canegro model to support sugarcane breeding by

predicting the impacts of genetic traits on yield

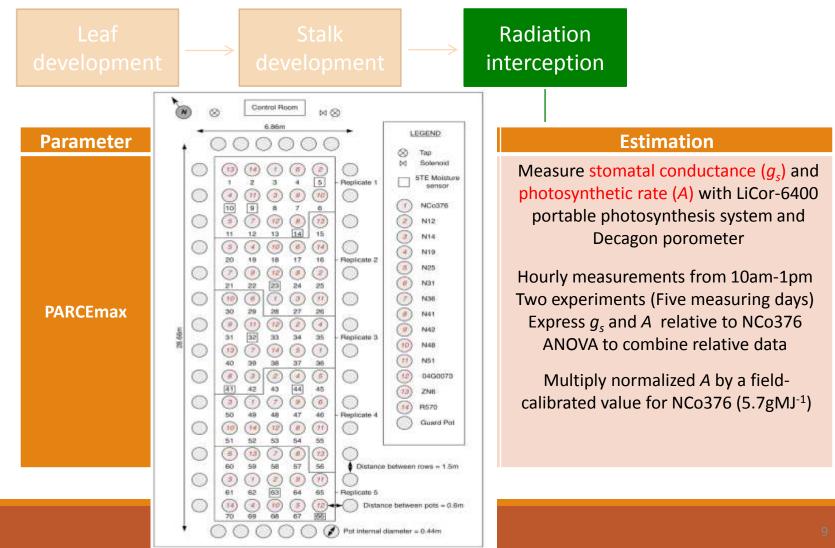
- 1. Determine **TP values** for selected genotypes in a pot trial
- Determine accuracy of simulated genotypic differences in canopy cover, stalk dry mass (SDM) and sucrose yield for selected genotypes grown in irrigated field trials using the TP values estimated from pot trial data
- 3. Develop a **phenotyping protocol** for estimating TP values
- 4. Determine **trait impacts** on simulated stalk dry mass for a selected irrigated environment
- 5. Identify a set of **ideal trait values** for a selected irrigated environment



- SASRI rainshelter, Mount Edgecombe, KZN
- Fully irrigated & fertilised pot trial (October 2014 June 2015)
- Complete randomised block design: Five replications of 14 genotypes

- Leaf development (Monthly leaf counts & TVD leaf size on primary stalks)
- Stalk development (Monthly TVD plant height on primary stalks)
- Plant physiology (Stomatal conductance, photosynthesis in 2 experiments)
- Biomass (Stalk dry mass, total dry biomass and sucrose content at harvest)

Leaf development						
Parameter Name	Description	Estimation				
PI1 PI2	TT taken between successive green leaves (°Cd)	35 30 30 25 30 25 20 25 20 15 0 0 400 800 1200 1600 2000 2400 2800 3200 3600 Thermal time (°C.d)				
LFMAX	Maximum number of fully expanded green leaves per primary stalk	Maximum green leaf number				
MXLFAREA	Leaf area of the largest fully expanded leaf (cm ²)	TVD leaf length and width multiplied by shape factor (0.7); Mean of the area of the biggest leaf in each pot				
MXLFARNO	Leaf number at which MXLFAREA occurs	Corresponding mean leaf no. of MXLFAREA				

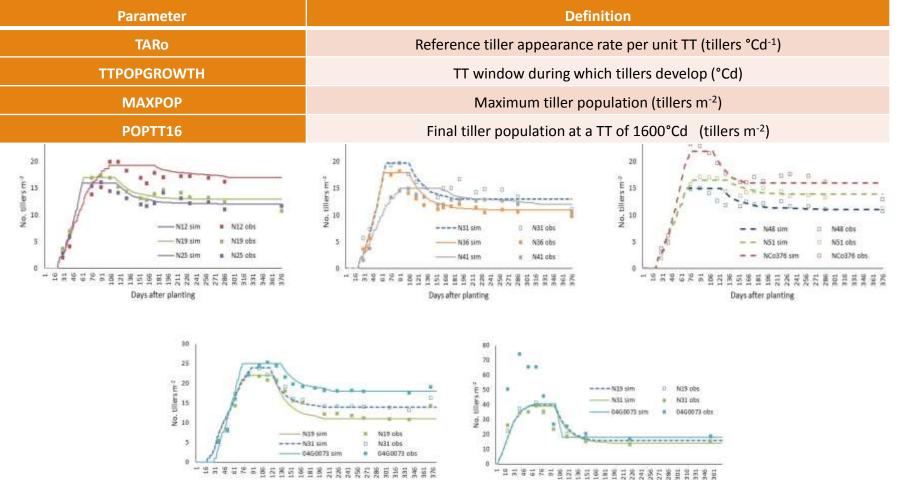


Leaf development	Stalk development				
Parameter	Description	Estimation			
CHUPIBASE	TT from shoot emergence to the start of stalk elongation (°Cd)	TT taken from shoot emergence to the appearance of leaf no. 10			
SERo	Reference stalk elongation rate per unit TT (cm °Cd ⁻¹)	Gradient of the linear regression of TVD height against TT			

Leaf development	\longrightarrow	Stalk development	\longrightarrow	Radiation interception	\longrightarrow	Biomass accumulation
	-					

Parameter	Definition	Estimation			
	Stalk partitioning coefficient:	Normalized stalk dry mass fraction of			
STKPFMAX	maximum fraction of aerial dry biomass	aerial dry biomass, scaled using a field-			
	growth partitioned to stalks (t t ⁻¹)	calibrated value for NCo376 (0.7 t t ⁻¹)			
	Sucrose partitioning coefficient:	Normalized sucrose fraction of stalk dry			
SUCA	sucrose content in the bottom of a	mass, scaled using a field-calibrated			
	mature stalk (t t ⁻¹)	value for NCo376 (0.56 t t ⁻¹)			

METHODOLOGY -EVALUATION


Determine accuracy of simulated genotypic differences in canopy cover, stalk dry mass (SDM) and sucrose yield for selected genotypes grown in irrigated field trials using the TP values estimated from pot trial data

METHODOLOGY -EVALUATION

Days after planting

Days after planting

METHODOLOGY -TRAIT IMPACTS

4. Determine trait impacts on simulated stalk dry mass for a selected irrigated environment

Single trait variants: assess the impact of a single trait when all other TP values were identical

	Trait value									
Trait parameter	Extreme min ^b	Min ^a	Baseline	Max ^a	Extreme max ^b					
PI1 (°Cd)	81	93	105	118	130					
PI2 (°Cd)	54	83	112	141	170					
CHUPIBASE (°Cd)	700	851	1002	1153	1304					
PARCEmax (g/MJ)	2.52	3.66	4.79	5.93	7.06					
STKPFMAX (t/t)	0.57	0.63	0.69	0.75	0.81					
SUCA (t/t ⁻)	0.50	0.55	0.59	0.64	0.68					

Multiple trait variants: assess the combined effects of multiple TPs

- Thirty-two hypothetical genotypes were defined, differing with respect to six TPs
- TP values generated using LP-TAU design in GEM-SA package; Same range of values

Trait impacts: Assess changes in mean (over 30 seasons) SDM

- Max, min, range of mean SDM values; Range % of baseline SDM; Probability distribution
- Path coefficient analysis

METHODOLOGY -IDEOTYPING

5. Identify a set of ideal trait values for a selected irrigated environment

Ideotyping: Investigate potential SDM gains by simulating a genotype with optimal TP values

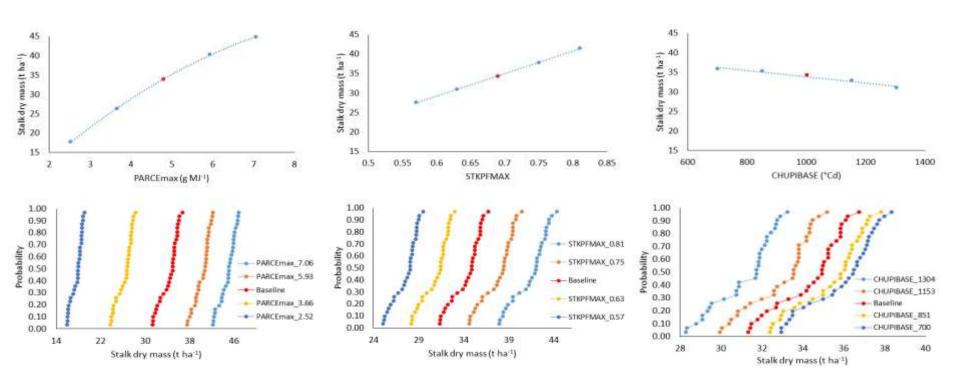
- Three most impactful traits (CHUPIBASE, PARCEmax and STKFPMAX)
- Compare mean SDM of ideotype to mean SDM yield of the highest-yielding multiple and single trait variants

Model configuration:

- Simulate crop growth in Pongola
- Two 12 month crops (April and October) from 1980 to 2009 (30 years).
- Well-watered conditions (application of 40mm applied when the soil water content of the top 50 cm reached 60% of field capacity).

RESULTS -TP VALUES

- Significant differences between all TPs that could be statistically analysed except STKPFMAX
- SERo showed the greatest genetic variation (78%), MXLFAREA (73%), MXLFARNO (63%) and PI2 (52%), PARCEmax (47%), CHUPIBASE (30%), PI1 (24%), LFMAX (23%), STKPFMAX (17%) and SUCA (15%)
- Significant inter-trait correlations: PI2 and PARCEmax (r=-0.71**); SUCA and STKPF (0.76**); SERo with STKPFMAX (0.84**), SUCA (0.80**) and CHUPIBASE (0.60*)
- Values of PARCEmax derived from A and from g_{sporo} were highly correlated (r=0.79**), as were genotype rankings (r=0.69**)
- PARCEmax values derived from A had a better correlation with observed SDM (r=0.66) in Pongola than that of PARCEmax values derived from g_{sporo}^{*} (r=0.30)


RESULTS -EVALUATION

- Model showed some potential for simulating genetic differences observed in field trials using TP values estimated from pot trial data
 - Significant differences in observed SDM in Pongola reflected well in simulated SDM rankings (r=0.75*)
 - No significant differences in observed SDM at other sites, and model simulations also showed small differences in SDM
 - Observed genotypic differences in SUCM values and rankings predicted well for Komatipoort_2012
- Model less successful in other respects
 - Unable to predict observed $\mathrm{FI}_{\mathrm{PC}}$ rankings and values at all sites
 - Over-emphasize PI1, underestimate MXLFAREA
 - Model is unsuitable for exploring trait impacts on canopy yield (empirical; disconnected from biomass growth)
 - Underestimated SDM values for all trials
 - SUCM values and rankings also not predicted well in Pongola and Komatipoort_2011

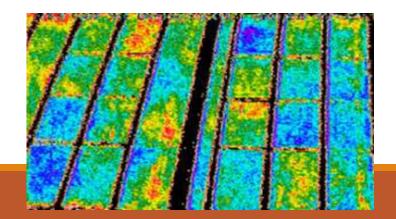
RESULTS -TRAIT IMPACTS

RESULTS -TRAIT IMPACTS

- Model able to simulate trait impacts on SDM of irrigated crops
- PARCEmax, STKPFMAX and CHUPIBASE were most impactful in single trait variant study
 - Simulated SDM correlated best with PARCEmax (r=0.89**) and STKPFMAX (r=0.41*) in multiple trait variant study;
 - Path coefficient analysis confirmed importance of PARCEmax (0.88) and STKPFMAX (0.40)
- Increasing these TPs increased SDM with no consequences to leaf, tiller & root development
- Ideotype with optimal values (7.06 g/MJ, 0.81 and 700°Cd) increased SDM by 8 and 12 t/ha when compared to the mean SDM values of the highest yielding multiple and single trait variants

FUTURE WORK

- Study identified a possible approach for trait impact studies and ideotyping in future
- Results will be used to:
 - improve Canegro
 - develop procedures for screening populations using HTP, particularly for measuring g_s
- Ph.D. study: "High-throughput phenotyping to assist breeding for drought tolerant sugarcane"
 - Overall aim: develop a HTP protocol for screening early-stage breeding populations for drought tolerance
- Objectives:
 - 1. Develop a proximal sensing of canopy reflectance procedure for estimating g_c, LAI and g_s
 - 2. Determine the impacts of traits on yield under well-watered and dry conditions
 - 3. Determine the heritability of traits
 - 4. Evaluate the benefit of implementing HTP as a screening procedure in the SASRI breeding program



FUTURE WORK

- Develop correlations between reflectance indices and trait values (Ground-truthing)
 - Pilot trial at SASRI rainshelter
 - Maximum of 2 genotypes will be grown under well-watered and water-deficit conditions
- Measurements will include:
 - Sap flow rate with heat dissipation monitoring
 - Chlorophyll and N content
 - Leaf-level photosynthesis, transpiration, ${\rm g}_{\rm s}$ and chlorophyll fluorescence
 - LAI and canopy cover
 - Canopy reflectance with DJI Phantom 4 and Parrot Sequoia in the visual (RGB), near infrared and thermal bands

FUTURE WORK

- Estimate trait values for a large number of genotypes with unmanned aerial vehicle (UAV) based HTP
 - refine HTP procedures; genetic variability and impacts of traits on yield
 - Field trial shallow soil near Komatipoort.
- Measurements will include:
 - Canopy reflectance and emittance; Crop height, yield

- Implement HTP procedure in early-stage plant breeding trial in a dry environment (approximately 35000 genotypes)
 - Genetic variation present in the existing trial and used to elucidate breeding potential of parents for use in subsequent crosses.

ACKNOWLEDGEMENTS

The input and data provided by Dr. Sanesh Ramburan and Immaculate Ngobese are gratefully acknowledged.

SASRI technical team

RESULTS -TP VALUES

- Significant differences between all TPs that could be statistically analysed except STKPFMAX
- Significant inter-trait correlations: PI2 and PARCEmax (r=-0.71**); SUCA and STKPF (0.76**); SERo with STKPFMAX (0.84**), SUCA (0.80**) and

CHUPIBASE (0.60*)

Genotype			Leaf dev	elopment		Stalk deve		Photosynthetic	Biomass partitioning	
								efficiency		
	PI1 ^a	PI2 ^a	LFMAX	MXLFAREA	MXLFARNO	CHUPIBASE ^b	SERo ^a	PARCEmax	STKPFMAX ^c	SUCA ^c
	(°Cd)	(°Cd)		(cm²)		(°Cd)	(mm °Cd ⁻¹)	(g MJ ⁻¹)	(t t ⁻¹)	(t t ⁻¹)
NCo376	101 ^{bc}	114 ^{ab}	14 ^a	256 ^h	19 ^{ef}	930	1.19 ^{cd}	5.7 ^a	0.70 ^a	0.58 ^{bcd}
N12	107 ^{ab}	143ª	13ª	370 ^{de}	22 ^d	1020	1.18 ^d	3.43 ^{fg}	0.66ª	0.59 ^{bcd}
N14	101 ^{bc}	114 ^{ab}	14 ^a	326 ^{efg}	25 ^c	947	0.92 ^f	0.92 ^f 5.19 ^{abc}		0.54 ^e
N19	100 ^{bc}	117 ^{ab}	13ª	391 ^{cd}	20 ^{def}	942	1.23 ^{cd}	4.18 ^{ef}	0.71ª	0.63ª
N25	104 ^b	103 ^b	13 ^{ab}	355 ^{def}	33ª	987	1.07 ^e	5.29 ^{abc}	0.71ª	0.58 ^{bcd} e
N31	111 ^{ab}	129 ^{ab}	11 ^b	329 ^{efg}	30 ^b	1028	1.10 ^{de}	4.66 ^{bcde}	0.66ª	0.57 ^{cde}
N36	114ª	101 ^b	14 ^a	459 ^b	18 ^f	1140	1.49 ^b	4.83 ^{de}	-	-
N41	116ª	112 ^{ab}	14ª	300 ^{fgh}	21 ^{de}	1038	1.36 ^{bc}	4.92 ^{bcd}	0.73ª	0.63ª
N42	102 ^{bc}	87 ^b	14 ^a	396 ^{cd}	29 ^b	1042	1.22 ^{cd}	5.40 ^{ab}	-	-
N48	108 ^{ab}	114 ^{ab}	13 ^{ab}	435 ^{bc}	19 ^{ef}	1053	1.32 ^c	5.00 ^{bcd}	0.73 ^a	0.63ª
N51	104 ^{ab}	116 ^{ab}	13 ^{ab}	339 ^{defg}	29 ^b	952	1.20 ^{cd}	4.47 ^{cde}	0.69ª	0.55 ^{de}
04G0073	112 ^{ab}	85 ^b	14 ^a	286 ^{gh}	26 ^c	1119	1.90ª	5.44 ^{ab}	-	-
ZN6	106 ^{ab}	119 ^{ab}	14ª	448 ^{bc}	18 ^f	987	1.25 ^{cd}	3.65 ^g	0.70 ^a	0.59 ^{bc}
R570	91 ^c	109 ^{ab}	13 ^{ab}	526ª	32 ^a	838	1.25 ^{cd}	4.95 ^{bcd}	0.70 ^a	0.61 ^{ab}
Mean	105	112	13	373	24	1002	1.26	4.79	0.69	0.59
Range	25	58	3	270	15	302	0.98	2.27	0.12	0.09
%Range	24	52	23	73	63	30	78	47	17	15
L.S.D. ^d	-	-	1.94	58.40	2.20	-	-	0.39	0.096	0.035

RESULTS -EVALUATION (PONGOLA)

		Flpc	(%)		SDM (t/ha)				SUCM (t/ha)			
	Observed		Simulated		Observed		Simulated		Observed		Simulated	
Genotype	Value	Rank	Value	Rank	Value	Rank	Value	Rank	Value	Rank	Value	Rank
	PONGOLA 2011											
N12												
N19												
N25												
N31												
N36												
N41												
N48												
N51												
NCo376												
Mean												
Range												
L.S.D.												-
RMSE r												